Programming in Standard
FORTRAN by Functional Blocks:
A Rigorous Structured Approach

Ronald C. Wackwitz and MayNell H. Wackwitz
The COMP-AID Company
513 Old Bear Creek Road
New Braunfels, TX 78132

Original version: May, 1977 A.D.
Revised May, 2006 A.D.

Contents

Introduction
1.1 Superior Structured Coding with Standard FORTRAN
1.2 A Rigorous Approach

1.3 A Dual Reaction

The software impasse: it’s impact, cause, and suggested cure
2.1 A Software Impasse
2.2 Suggested Causes
2.3 Suggested Solutions L
2.4 Language Independence
2.5 A Prerequisite to Structured Coding

2.6 Structured Coding / Structured Programing

Structured Programming: It’s Meaning, and it’s Goals

3.1 Structured Programming Equated to GOTO-less Programming
3.2 Real Issue Is Not Removal of GOTO’s
3.3 GOTO’s Pemissable as Verifiable Constructs
3.4 Many Good Programs over the Years Had GOTO’s

The Skeletons-in-the-Closet of the New Programming

4.1 Methodology Alone Is Insufficient
4.2 The Excesses of the New Programing
4.3 The Counter-revolution
4.4 Efficiency Is Still Important
4.5 Dijkstra and Efficiency 0oL
46 P — QConversion
4.7 A Workable Alternative - Now
4.8 Misuse of Automatic Structuring Machines Considered Harmful

4.9 A Reflection on Efficiencies and compilers — in 2006

A Critique of Functional Blocks

51 Not Novel With Us

ii

10
10
11
11
12
12
13
14

15

5.2 Our Concept: Renumbering by Blocks o 15

5.3 Structuring By Information Blocks oo 16
5.4 Single Line of Comment e 17
5.5 HIPO-Chart Processes e 18
5.6 Proper GOTO Branches: Verifiable Code 18
5.7 A More Precise, Description Preceding a Functional Block 19
5.8 Self-Documenting L 19
5.9 How Many Blocks in a Module? 20
5.10 Can there be an Exception to Total Module Length? 21
6 Conclusion 292
6.1 Functional Blocks offer a powerful alternative 22
6.2 Converting legacy FORTRAN to FORTRAN 90 22
Appendix 23
Acknowledgements 32
References 33

il

List of Tables

1 Suggested Solutions for the Software Impasse, 4
2 Events Preceding Multiply-Accessed Blocks in the CHECKER subroutine 28
3 Number of Retreats required for Board Sizes up to 10, on IBM 370/155 30
4 Number of Retreats and timings on Bantam PC 31

v

1 Introduction

1.1 Superior Structured Coding with Standard FORTRAN

We at COMP-AID have been using standard FORTRAN to achieve rigorously structured
code for 28 years now. Instead of denoting structure through use of syntactic constructs
(which standard FORTRAN! lacks), we denote structure through our method of Functional
Blocks.

We advance in this paper the argument that equal, if not superior, overall programming
efficiency results from the use of Functional Blocks, rather than from the use of a“structured”
language (e.g., the Fortran 90 series, PL /I, ALGOL, PASCAL, etc.), simply because the use
of Functional Blocks requires the interactive involvement of the programmer — a criterion
Prof. Donald Knuth rates as highly desirable.[34]

1.2 A Rigorous Approach

We present evidence to show that the use of Functional Blocks in standard FORTRAN results
in code which is verifiable - i.e., which is amenable to proof-of-correctness. Modules® coded
in this fashion are highly understandable, and as a result are easily maintained. Moreover,
since the coding it performed in standard FORTRAN, the execution speed of the resulting
code is superior to that of a comparable module coded in a high-level structured language.

One of the main purposes of this paper is to prove that the use of Functional Blocks in
coding is a rigorous approach. Accordingly, this paper presupposes that the reader already is
familiar with our concept of Functional Blocks. To the reader who is not, we recommend our
companion report, Structuring FORTRAN Modules by Functional Blocks: An Overview (and
a COMP-AID Service)[41],* where the concept is carefully explained and vividly illustrated.
However, in the Appendix to this paper, we also present a Very brief overview of our concept
of Functional Blocks.

1By this, we mean all the FORTRANs up to FORTRAN 77, but excluding the Fortran 90 series.

2The authors disclaim any endorsement of this position by either Profs. Knuth or Dijkstra. However, we feel we have in
every instance quoted Prof. Knuth completely in context. Moreover, every quote is carefully referenced to its very page of use.

3The term “module”, up through Fortran 77, denoted a unit of source code (e.g., a program, a subroutine, a function, or
a block data unit of source code). Starting with Fortran 90, however, the term was preempted to denote a structure-type
container, completely disregarding years of prior usage up through FORTRAN 77. In this paper, we use the term module in
the original sense, unless otherwise noted.

4Until we are able to post this report onto the Internet, please refer to our related report, Overview of the Methodology of
Functional Blocks, which is posted on the Internet.

2 1 INTRODUCTION

1.3 A Dual Reaction

We envision a dual reaction to our paper. Of course, that which we stated back in 1977,
when this report was first published, will differ somewhat from that which is applicable for
2006. We shall give both:

e Back in 1977.

1. We expect that the zealous advocates of the New Programming will find our paper
to be somewhat disquieting at the least, if not outright shocking at the most, since
it has never occurred to many of them that there may be equally good alternatives
to their vision of structuring code by syntactic constructs. Nor will it soothe them
any to learn that our methodology is highly consistent with the views espoused by
Prof. Donald Knuth, and even with some of the later views of Prof. E.W. Dijkstra.

2. From the vast majority of users in Industry who still use standard FORTRAN,
however, we expect a much happier reaction. Many of these users are already
understandably upset that they have been branded sinners by the advocates of the
new Programming for not abandoning standard FORTRAN. Now they can brush
aside these indictments and continue to get their work done, leaving the academic
philosophizing to their accusors.

e Fast forward to 2006.

1. By and large, the so-called structured code of the 1970’s and 1980’s has been
replaced by the Object Orientated Programming Languages (OOPLs). And even
FORTRAN itself has been preempted with the appearance of the Fortran 90 series
of languages. Regarding Fortran 90, Andrew Scriven[43] states:

Fortran 90 is truly so different from previous Fortran that adopting it as the
language of choice is really like changing languages. ... The proliferation of
new features recalls the old joke: “The programming language of the future
will be nothing like Fortran and will be called Fortran!”

The abundance of syntactic constructs in the Fortran 90 series permits one to pro-
gram without using any statement numbers. Moreover, the fact that the Fortran
X3J3 committee within Fortran 90 is suggesting obsoleting the GOTO statement once
again strongly suggests that the committee views the “old FORTRANs” (FOR-
TRAN 77 and downward) as inferior and obsolete languages.

2. We readily admit that the level of abstraction is greater in Fortran 90 where vector
and matrix operations are involved. However, since the use of Functional Blocks
within FORTRAN 77 raises the overall level of abstraction, we suggest that the use
of FORTRAN 77 with Functional Blocks, when reclaiming legacy FORTRAN code,
is much more efficient than first processing the legacy FORTRAN code through one
of the many GOTO removers to convert it to Fortran 90. No, first structure (reclaim
or refactor) the module by Functional Blocks, next modify (upgrade) the code
as desired, and then convert it to the desired final language (e.g., Fortran 90 or
C++). Moreover, this approach is also consistent with Prof. Knuth’s warning (cf.
Section 4.8 on page 13) that the removal of GOTOs from a poorly structured original
module will only result in a poorly structured transformed module.

2 The software impasse: it’s impact, cause, and suggested cure

2.1 A Software Impasse

We have reached an impasse in our software development efforts. overrun budgets, missed
dead lines, and unmet specifications are the rule in most DP departments, rather than the
exception.

To appreciate the magnitude of this indictment, we turn to an Air Force study, CCIP-85,
which Dr. Barry W. Boehm made public in 1973.[1] We find that the annual Air Force
software budget during the previous year (in 1972) was between $1 billion and $1.5 billion,
making it about three times as great as the Air Force expenditure on computer hardware
for that year, and about 4 to 5% of the total Air Force budget! Study CCIP-85 estimated
software expenses in the Air Force rising to over 90% of its total DP budget by 1985. Dr.
Boehm considers that this trend is probably characteristic of other organizations also.

From a different perspective, we learn that the “average design and programming cost per
instruction” rose from $4.50 in 1959 to over $7.50 in 1975.[2] Specific costs have been much
higher. For example, the programs used in the Apollo moon missions cost as much as $200
per instruction. [3]

Moreover, according to Charles P. Lecht in his upcoming book, The waves of Change, “if
current trends continue, by 1980 it is estimated that more than 80% of the computer user’s
total human resources — programmers and system analysts — will be devoted to the main-
tenance of old application programs, with less than 20% of these resources available for new
applications development.”[4]

2.2 Suggested Causes

What has been responsible for this software crisis? Lack of communication with the end
user would undoubtedly be high on the list of suggested causes. To this we must also add
at least three additional causes: (1) inadequate program design, (2) unverifiable code, and
(3) lack of effective program management.

2.3 Suggested Solutions

For each cause listed above, successfully-tried methodologies either have evolved, or are in
the process of evolving, to correct the associated abuses, as shown in Table 1 on the following

page.

4 2 THE SOFTWARE IMPASSE: IT’S IMPACT, CAUSE, AND SUGGESTED CURE

Table 1: Suggested Solutions for the Software Impasse

Cause Suggested Solutions

Lack of communication with end user | HIPO charts[5][6]
Structured Walkthroughs[6] (or Design Reviews|[7])

Inadequate program design Decomposition of program into small independent functional modules[8][9]
Chief Programmer Team[10][11]

Top-Down Development[10][11]

Stepwise Refinement[44]

Unverifiable code Structured Code[12][13]

“Egoless” Programmers[14][15][16]

Decomposition of program into small independent functional modules[8][9]
Code Reviews|6]

Lack of effective program management | Chief Programmer Team[10][11]
Top-Down Development[10][11]
Stepwise Refinement[44]

2.4 Language Independence

Of the suggested solutions presented above, all are independent of the programming language,
except for one®: Structured Code.

In the case of structured code, however, language has been deemed strongly important. In
fact, the concensus of some authorities has been that certain languages, which they feel
do not properly support the “structured code” concept, should accordingly be disregarded!
Standard FORTRAN is one such of these.

2.5 A Prerequisite to Structured Coding

In the remainder of this paper we shall concern ourselves exclusively with structured code
- its “definition”, background, and application to standard FORTRAN. However, we must
realize that structured code, as just one of the new methodologies, is not an end-in-all in
itself. It depends, as a prerequisite, both upon program design and user acceptance having
been satisfactorily completed — at least initially, keeping in mind Wirth’s[44] reminder
that stepwise refinement will allow the user’s requirements to further be clarified as coding,
testing, and user review progress. Even Prof. Dijkstra reflected on this in his reply to Van
der Poel[18] that “completely specified problems” have a way of subsequently being altered
by the user. So we see that the requirements of Wirth and Dijkstra, back in 1977, are very
similar to that of the “Extreme Programming”® of 2006. Isn’t it interesting, as typified by
the old saying, “What goes around, comes around”, that the “old” methodologies of the
1970’s reappear today, albeit with just “new” names.

5G.J. Myers has recently[17] pointed out that the ability to decompose a program into small independent functional modules
is also dependent upon language, with PL/I and FORTRAN being the most amenable to this concept.

6Please see “How Agile Are You?” [45] for an excellent brief review of the Extreme Programming methodology — this one
from the standpoint of programming in OOPLs. And, for an even better review — not only because it is pertinent to Fortran-95
rather than to JAVA or C++, but also because it most adequately exemplifies the methodology — please see the NASA Langley
Research Center publication by William Kleb et al[46].

2.6 Structured Coding / Structured Programing 5

2.6 Structured Coding / Structured Programing

The terms Structured Coding and Structured Programming are at times used interchangeably
to denote the same process. At other times Structured Programing is used to denote all
the new methodologies, while Structured Coding simply refers to a method for achieving
understandable and verifiable code within given modules. In this paper we shall accordingly
concentrate on that aspect of Structured Programming which deals with coding individual
modules in an understandable and verifiable fashion.

6 3 STRUCTURED PROGRAMMING: IT’S MEANING, AND IT’'S GOALS
3 Structured Programming: It’s Meaning, and it’s Goals

3.1 Structured Programming Equated to GOTO-less Programming

If we're truthful, most of us must admit that we equate structured programing to GOTO-less
programming.

From a historical perspective,” doubt concerning the use of the GOTO began building as
early as 1959, culminating in 1968 with Prof. Dijkstra’s famous paper, “Go to statement
considered harmful”. Concerning this paper, Prof. Donald Knuth comments[20]:

This note[12] rapidly became well-known; it expressed Dijkstra’s conviction that
go to’s ‘should be abolished from all higher level programming languages (i.e.,
everything except, perhaps, plain machine code) The go to statement as
is stands is just too primitive; it is too much an invitation to make a mess of
one’s program.” He encouraged looking for alternate constructions which may be
necessary to satisfy all needs.

In that one paper we have the two main objections to the use of GOTO’s:

1. Undisciplined use of them can lead to unintelligible spaghetti-bowl code

2. Code utilizing GOTO’s was considered to not be amenable to proof-of-correctness.

3.2 Real Issue Is Not Removal of GOTO’s

While many would agree that the real issue is structured programming, yet, as Prof. Knuth
notes,[21]

... unfortunately this has become a catch phrase whose meaning is rarely under-
stood in the same way by different people.... Only one thing is really clear:
Structured programming is not the process of writing programs and then eliminat-
ing their go to statements.... Indeed, Dijkstra’s original article[22] which gave
Structured Programming its name never mentions go to statements at all; he di-
rected attention to the critical question, ‘For what program structures can we give
correctness proofs without undue labor, even if the programs get large?’” By cor-
rectness proofs he explained that he does not mean formal derivations from axioms,
he means any sort of proof (formal or informal) that is ‘sufficiently convincing’;
and a proof really means an understanding.

To those of us who have equated structured programming to GOTO-less programming, Prof.
Knuth’s above statement may be somewhat disquieting. Continuing in this vain, that the
real issue is not the removal of GOTO’S, Knuth states[23]:

7 An excellent historical background of the events leading to the current disfavor with GOTO statements has been presented
by Prof. Knuth.[19]

3.3 GOTO’s Pemissable as Verifiable Constructs 7

In other words, we shouldn’t merely remove go to statements because it’s the
fashionable thing to do; the presence or absence of go to statements is not really
the issue. The underlying structure of the program is what counts, and we want
only to avoid usages which somehow clutter up the program. Good structure can
be expressed in FORTRAN or COBOL, or even in assembly language, although
less clearly and with much more trouble. The real goal is to formulate our programs
in such a way that they are easily understood.

Premise 1: The real goal is to formulate our programs in such a way that they
are easily understood.

3.3 GOTO’s Pemissable as Verifiable Constructs

Prof. Knuth has just delivered another disquieting pronouncement - that good structure can
be expressed in FORTRAN or COBOL, or even in assembly language, albeit “less clearly
and with much more trouble”.

Interestingly, we’ve since realized that the GOTO construct, used under certain well-defined
conditions, is amenable to proof-of-correctness, as Prof. Knuth notes[24]:

For many years, the go to statement has been troublesome in the definition of
correctness proofs and language semantics; Just recently, however, Hoare has
shown that there is, in fact, a rather simple way to give an axiomatic definition
of go to statements; indeed, he wishes quite frankly that it hadn’t been quite
so simple. For each label L in a program, the programmer should state a logical
assertion a(L) which is to be true whenever we reach L. Then the axioms

{a(L)} go to L {false}
plus the rules of inference

{a(L)} S{P} - {a(L)} L:S{P}
are allowed in program proofs, and all properties of labels and go to’s will follow if
the a(L) are selected intelligently. One must, of course, carry out the entire proof
using the same assertion a(L) for each appearance of the label L, and some choices
of assertions will lead to more powerful results than others.

Informally, a(L) represents the desired state of affairs at label L; this definition
says essentially that a program is correct if a(L) holds at L and before all ‘go to L’
statements, and that control never ‘falls through” a go to statement to the following
text. Stating the assertions a(L) is analogous to formulating loop invariants. Thus,
it is not difficult to deal formally with tortuous program structure if it turns out
to be necessary; all we need to know is the ‘meaning’ of each label.

Premise 2: The GOTO construct is allowed in program proofs if, for each label L,
there is a logical assertion a(L) which is to be uniquely true, for each
appearance of the label L, whenever we reach L.

Corollary: Programs written in Standard FORTRAN, utilizing the method

8 3 STRUCTURED PROGRAMMING: IT’S MEANING, AND IT’S GOALS

of Functional Blocks, are verifiable.

Corollary: Maintenance changes made to a Functional Block (in which
only “proper GOTO branching” is utilized) will be isolated
to that block.

3.4 Many Good Programs over the Years Had GOTO’s
Knuth, continuing, states:[25]:

In other words, we can indeed consider go to statements as part of systematic
abstraction; all we need is a clearcut notion of exactly what it means to go to
each label. This should come as no great surprise. After all, a lot of computer
programs have been written using go to statements during the last 25 years, and
these programs haven’t all been failures! Some programmers have clearly been
able to master structure and exploit it; not as consistently, perhaps, as in modern-
day structured programming, but not inflexibly either. By now, many people who
have never had any special difficulty writing correct programs have naturally been
somewhat upset after being branded as sinners, especially when they know perfectly
well what they’re doing; so they have understandably been less than enthusiastic
about ‘structured programing’ as it has been advertised to them.

Premise 3: A powerful alternative to structuring code by syntactic constructs
does exist: structuring code by Functional Blocks.

Corollary: Programs exhibiting a high level of understandability can be programmed
in Standard FORTRAN utilizing the method of Functional Blocks.

4 The Skeletons-in-the-Closet of the New Programming

4.1 Methodology Alone Is Insufficient

Prof. Knuth’s comments which we have presented above concerning use of the GOTO do not
disagree sharply with Prof. Dijkstra’s more recent views. Concerning this, Knuth states[26]:

I believe that by presenting such a view I am not in fact disagreeing sharply with
Dijkstra’s ideas, since he recently wrote the following: ‘Please don’t fall into the
trap of believing that I am terribly dogmatical about [the go to statement]. I
have the uncomfortable feeling that others are making a religion out of it, as if the
conceptual problems of programming could be solved by a single trick, by a simple
form of coding discipline![27]

We should like to emphasize Prof. Dijkstra’s warning: “...as if the conceptual problems of
programming could be solved by a single trick, by a simple form of coding discipline!” Others
have offered the same pronouncements. For example, Richard J. Weiland[28] bears witness
that “...the unfortunate fact is that programs written in PL/I ... are typically as crummy
and unstructured as those in any other language.... Obviously, this is not to say that one
can’t write handsomely structured PL/I, just that not very many people do. Alas, Simply
picking PL/I coding is not enough.®” Weiland concludes that the two main requirements, (1)
“thinking through the transformations that produce required results,” and (2) “developing

a functional design”, are really independent of whether “one is going to code in COBOL,
PL/I, FORTRAN, Assembler, or LISP”.

The witness of Kenneth T. Orr[29] is similar. He feels that “if one attacks a problem logically
and with the right design tools, the language used to code the problem becomes considerably
less important.” His experience has been “...that there is ...little difference between lousy
programs written in COBOL and lousy pro-grams written in PL/1.” He concludes by stating:
“But while the programming language used doesn’t seem to be highly correlated with good
(or lousy) programs, the underlying design does.®” As a result of structured systems design
and programming discipline, I've seen more excellent programs in the last two years which
run correctly the first time than I have in the previous 14 years using traditional design and
coding techniques.”

The conclusion of the above is that the design process (or structured system design is the
important point to be continually emphasized. Lose sight of that, and the language used
doesn’t really make that much difference!

Premise 4: When programmers use the so-called "structured” programming
languages (e.g., PL/I, ALGOL, PASCAL), they are susceptible to
falling into the trap of thinking that the mere use itself of
these languages will effect beautifully understandable and “correct”
code. This has been shown most emphatically to not be the case;
they have simply been lulled into forgetting about DESIGN!

8Ttalics are ours.

10 4 THE SKELETONS-IN-THE-CLOSET OF THE NEW PROGRAMMING

4.2 The Excesses of the New Programing

The present “software crisis” is not new. It, or its forerunner, started some ten years ago —
in the late 1960’s. Since up till then people had thought programming was supposed to be
easy, the reaction to this paradoxical manifestation was both alarming and excessive. Knuth
notes[30] that, “as a result of the crisis, people are now beginning to renounce every feature
of programing,that can be considered guilty by virtue of its association with difficulties. Not
only go to statements are being questioned; we also hear complaints about floating-point cal-
culations, global variables, semaphores, pointer variables, and even assignment statements.”

(Knuth’s next statement would be humorous, were it not based on a realistic appraisal of
current events. As such, it indicates the excesses of the New Programming.) Knuth next
states: “Soon we might be restricted to only a dozen or so programs that are sufficiently
simple to be allowable; then we will be almost certain that these programs cannot lead us
into any trouble, but of course we won’t be able to solve many problems.”

4.3 The Counter-revolution
Continuing, Knuth states[26]:

In other words, it seems that fanatical advocates of the New Programming are
going overboard in their strict enforcement of morality and purity in programs.
Sooner or later people are going to find out that their beautifully-structured pro-
grams are running at only half the speed — or worse — of the dirty old programs
they used to write, and they will mistakenly blame the structure instead of rec-
ognizing what is probably the real culprit — the system overhead.... Then we’ll
have an unfortunate counter-revolution, something like the current rejection of the
“New Mathematics” in reaction to its over-zealous reforms. . ..

In the mathematical case, we know what happened: The intuitionists taught
the other mathematicians a great deal about deductive methods, while the other
mathematicians cleaned up the classical methods and eventually ‘won’ the battle.

Knuth envisions that a similar thing will eventually happen in the case of computer science:
“. .. purists will point the way to clean constructions, and others will find ways to purify their
use of floating-point arithmetic, pointer variables, assignments, etc., so that these classical
tools can be used with comparative safety.”

To this list of “classical tools”, we shall add Standard FORTRAN , with its use of GOTO’s.
We wholeheartedly concur with Knuth that former excessive misuse of a tool is insufficient
grounds for the total abandonment of that tool — especially when the replacement (open to
its own set of abuses) has fared equally as bad more often than not!

Our suggestion for “purifying” the misuse of “classical” FORTRAN is the introduction of
the Functional Block. With the advent of this concept, we not only retain the recognized
efficiencies of execution and core-allocation inherent in standard FORTRAN, but we also

4.4 Efficiency Is Still Important 11

achieve highly understandable code. Moreover, of equally high importance, is that the pro-
cess of programing with functional blocks in a language requires the use of an interactive
programming aid, which — through its detection of “improper GOTO branches” — keeps
directing the programmer back to the key factor: DESIGN. This concept puts the empha-
sis (overhead) where it’s needed — in the DESIGN/coding stage — not, however, in the
execution stage, as do the “structured” languages.

4.4 Efficiency Is Still Important

Some have attempted to excuse the execution overhead of their structured languages by
minimizing the need for speed. Are not computers much faster than they used to be?, they
query. While the answer to this is a resounding Yes, yet it’s not exactly the argument you
present to a DP manager who's facing a costly upgrade, simply because he can’t meet all
his scheduling — even though he’s running a 24 hour shop. Even a 5% increase in efficiency
would “give” him an hour more each day.

Prof. Knuth talks a lot about efficiencies. Yet, most admittedly, he warns (several times,
in fact) against premature optimization[31]: “We should forget about small efficiencies, say
about 97% of the time: premature optimization is the root of all evil.”

Having so advised, however, he then continues:

Yet we should not pass up our opportunity in that critical 3%. A good pro-
grammer will not be lulled into complacency by such reasoning, he will be wise
to look carefully at the critical code; but only after that code has been identified. . ..

After a programmer knows which parts of his routines are really important, a
transformation like doubling up of loops will be worthwhile. Note that this trans-
formation introduces go to statements - and so do several other loop optimizations;
I will return to this point later.

4.5 Dijkstra and Efficiency

Prof. Dijkstra’s realistic appraisal of such optimizations as Knuth discusses above may
shock some of the New Programming Purists. Concerning Dr. Dijkstra’s reaction, Knuth
states[32]: “He went on to say that he looks forward to the day when machines are so fast
that we won’t be under pressure to optimize our programs; yet

For the time being I could not agree more with your closing remarks: if the
economies matter, apply ‘disciplined optimization’ to a nice program, the cor-
rectness of which has been established beyond reasonable doubt. Your massaging
of the program text is then no longer trickery ad hoc, it is perfectly safe and sound.

“It is hard for me to express the joy that this letter[33] gave me; it was like having all my
sins forgiven, since I need no longer feel guilty about my optimized programs.”

12 4 THE SKELETONS-IN-THE-CLOSET OF THE NEW PROGRAMMING

4.6 P — Q Conversion

It is that old problem — a maintainable, understandable program ws. an efficient program.
In the world of the New Programming, you apparently must choose one or the other. Coex-
istence, it seems, is unobtainable in the same program at the same time.

Prof Knuth presents a very interesting solution to this problem — the P — Q conversion[34]:

A programmer should create a program P which is readily understood and
well-documented, and then he should optimize it into a program Q which is very
efficient. Program QQ may contain go to statements and other low-level features,
but the transformation from P to Q should be accomplished by completely reliable
and well-documented 'mechanical’ operations.

At this point many readers will say, 'But he should only write P, and an opti-
mizing compiler will produce Q.” To this I say, 'No, the optimizing compiler would
have to be so complicated (much more so than anything we have now) that it will
in fact be unreliable.” I have another alternative to propose, a new class of software
which will be far better.

Knuth goes on to propose an interactive type of compiler - i.e., one in which the programmer
interacts with the optimizing compiler by specifying in the source language itself just how
optimization is to proceed. Referring obviously to an extremely high level language, Knuth
reflects:

Once we have a suitable language, we will be able to have what seems to
be emerging as the programming system of the future: an interactive program-
manipulation system, analogous to the many symbol-manipulation systems which
are presently undergoing extensive development and experimentation. . ..

The programmer using such a system will write his beautifully-structured, but
possibly inefficient, program P; then he will interactively specify transformations
that make it efficient. Such a system will be much more powerful and reliable than
a completely automatic one. ... The original program P should be retained along
with the transformation specifications, so that it can be properly understood and
maintained as time passes.

4.7 A Workable Alternative - Now

What we’ve been proposing is very analogous to Knuth’s proposal — as far as the end
results to be achieved. However, instead of working in a very high level language (such
as P), then interacting with a compiler to produce Q, we work in Q directly (where Q is
an intermediate level language, such as standard FORTRAN), and interact with a block-
renumbering, GOTO-validating programming aid to achieve an extremely understandable
and verifiable module programmed directly in Q! Two important points should be noted:

4.8 Misuse of Automatic Structuring Machines Considered Harmful 13

1. both execution and documentation apply to the same program
2. both standard FORTRAN and our RENUMF 2.3 programming aid are available now!/

4.8 Misuse of Automatic Structuring Machines Considered Harmful

Prof. Knuth espoused the P — Q transformation, utilizing an interactive compiler. Two
points should be noted concerning this: (1) P is highly structured to start with, and (2) the
P — Q transformation — rather than being completely automatic — requires a design-type
of effort on the programmer’s part as well.

The opposite transformation (i.e., a Q — P transformation) has also received much attention.
(See Knuth[35] for a review of this.) As before, Q can contain GOTO’s, as well as other
low-level constructions, while P should be a high-level, well-structured program. Attempts
at this Q — P conversion have, however, concentrated on only one aspect: elimination of
GOTO’s. Moreover, such structuring machines proceed automatically, rather than requiring
programmer interaction. The result has been that they work fairly well — if Q is carefully
designed (i.e., structurally organized) to start with.

The opposite is not true, however. If Q is poorly designed to start with, so will the trans-
formed P version similarly be poorly structured. Both Knuth and Dijkstra concur on this
point. Knuth states[23]: “If such automatic go to elimination procedures are applied to
badly structured programs, we can expect the resulting programs to be at least as badly
structured. Dijkstra pointed this out already[12] . ..saying:

The exercise to translate an arbitrary flow diagram more or less mechanically into a
jumpless one, however, is not to be recommended. Then the resulting flow diagram
cannot be expected to be more transparent than the original one.

“In other words, we shouldn’t merely remove go to statements because it’s the fashionable
thing to do; the presence or absence of go to statements is not really the issue. The
underlying structure of the program is what counts, and we want only to avoid usages
which somehow clutter up the program. Good structure can be expressed in FORTRAN or
COBOL, or even in assembly language, although less clearly and with much more trouble.
The real goal is to formulate our programs in such a way that they are easily understood.”

Our recommendation, concerning the use of an automatic structuring machine for converting
standard FORTRAN to one of the so-called structured FORTRAN’s, is that this conversion
be applied only after the programmer has cleaned up the code by recasting the standard
FORTRAN program in the form of Functional Blocks. Then such a conversion can take
place efficiently. (Of course, once the standard FORTRAN program has been clarified in
the form of Functional Blocks, there is really no advantage to going over to a less efficient
“structured” FORTRAN.)

Premise 5: Use of completely automatic structuring machines on poorly structured
low-level programs, in order to convert them to jumpless “high-level” programs,
accomplishes one thing only: removal of GOTO’s. Unfortunately, the clarity of

14 4 THE SKELETONS-IN-THE-CLOSET OF THE NEW PROGRAMMING

these transformed programs, as well as the efficiency with which they can be
maintained, is not tmproved.

Corollary: There is no substitute for the interactive involvement of the programmer.
A programming aid such as RENUMF, which aids the programmer in the
structuring process, not only interactively involves the programmer, but also
significantly reduces the manpower requirements involved in the process.

4.9 A Reflection on Efficiencies and compilers — in 2006

While the “standard” FORTRAN of 1977, FORTRAN 77, has remained a steadfast and reli-
able workhorse to this very day, yet the so called “structured” languages have changed. Now
they are the Object Orientated Programming languages, with their own level of overhead,
as well as the new FORTRAN, the FORTRAN 90 and upward series — which, as Andrew
Scriven[43] notes, “...will be nothing like Fortran and will be called Fortran”.

Of particular note with respect to efficiency degradation in the new “FORTRAN” are two
usages,

e the module statement®
e user derived types!”

which the NASA Langley Research Center publication by William Kleb et al[47] has com-
mented on in some detail:

... use of the module construct can incur severe penalties for unformatted disk
I/O. The module interface is over thirty times slower than the data transferred via
a conventional argument list on an SGI.

As in the case of modules, it was found that the use of derived types can also
incur severe execution penalties ...this coding idiom can yield execution times
more than thirty times slower for unformatted disk I/O and nearly a factor of
three slower for floating-point operations over the argument list model.

We feel that Andrew Scriven’s[48] comment succinctly summarizes the underlying problem:
“When you move further away from the underlying machine instructions, and increase the
level of abstraction, you make the user’s job easier and the compiler writer’s job harder.”

And therein is the key — the compiler. As an example, in a recent personal communication
Dr. William L. Kleb[49] explained to us that the above cited inefficiencies with respect to
usage of the module and derived types were due to the particular compiler which they were
using on their SGI hardware. When they went to a different compiler, they were able to
obtain efficiencies the same as, if not better than, those under the former FORTRAN 77
programs.

The compiler is the key.

9Here we use the FORTRAN 90 definition of this term.
10These are similar to the STRUCTURE construct within VAX FORTRAN 77.

15
5 A Critique of Functional Blocks

5.1 Not Novel With Us

The concept of a block of code is certainly not novel with us.!!. It is simply the decomposition
of a task as a whole into a simpler set of understandable parts. Knuth states[21]: “We
understand complex things by systematically breaking them into successively simpler parts
and understanding how the parts fit together locally.”

Blocks of code, admittedly, are not all that novel. Two of us have been breaking our modules
of code (be they in FORTRAN or in Assembler) into blocks since 1963. Short of that,
however, we look back on some of our old code and see that our blocks usually contained a
composite of several functions. Moreover, we thought nothing of branching out of one block
into the midst of another block.

A newer concept of blocks, or chunks, has been emerging since then, however. Robert
E. Horn, for example, who has developed a systematic method (Information mapping) of
organizing documentary material,[36] refers to chunks as “Information Blocks”. “One rule”,
he states, “is to put only information of one functional kind in an information block.”

David Frost states[37] that “...chunks based on function are important for handling proce-
dures. A procedure’s purpose is to do things (i.e., perform functions). A good functional
chunk is an entity that (1) does one thing, (2) can be named, and (3) its function can be
described easily in one sentence without resorting to a great many if’s, and’s, and but’s.”

To the above contributions we need add only Knut Bulow’s thoughts on “Programming in
Book Format”[38] to complete the then-existing picture of a functional block. Mr. Bulow
advances four points:

1. The blocks (which he terms chapters) should be numbered (just as chapters in a book
are numbered)

2. No more than a single line of comment should precede each block of code

3. If more than a single line of comment is required to describe an algorithm, etc., in
certain blocks, then these more extensive comments should be placed at the beginning
of the module, just as a table-of-contents is placed at the beginning of a book

4. Each chapter should “...be as self-sufficient as possible, with limited GO TO’s branch-
ing to other chapters”

5.2 Our Concept: Renumbering by Blocks

To the framework of a functional block as formulated by Horn, Frost, and Bulow, it occurred
to us how meaningful it would be if the statement numbers in each block started with the
number of that block. This one additional characterization of functional blocks would now
allow programmers to associate statement numbers with the functional aspects of their code.

HHowever, our concept of “renumbering by functional blocks” and of checking for “improper GOTO branches”, did originate
with us

16 5 A CRITIQUE OF FUNCTIONAL BLOCKS

Additionally, as we illustrate in our companion technical report, Structuring FORTRAN
Modules by Functional Blocks: An QOverview (and a COMP-AID Service), and as can be
seen from the example in the Appendix, the significant or leading portion of each statement
number is equivalent to the outline-number in the respective outline of the processes. For
example, if second-level blocking is utilized - i.e., where each major block can in turn be
divided into sub-blocks - then the first two digits of the statement numbers are significant,
so that the set of numbers (4200, 4210, 4220, ...) would be associated with the process of
sub-block 4.2.

Moreover, we feel our concept of “renumbering by functional blocks” has removed most of
Prof. Knuth’s objection to numeric labels[25]:

We've already mentioned that go to’s do not have a syntactic structure that the
eye can grasp automatically; but in this respect they are no worse off than variables
and other identifiers. When these are given a meaningful name corresponding to
the abstraction (N.B. not a numeric label!), we need not apologize for the lack of
syntactic structure.

5.3 Structuring By Information Blocks

Prof. Knuth stated above that GOTQO’s lack a syntactic structure that the eye can grasp.
We rectify that by viewing each functional block (or sub-block) as an information block,
separated from the other information blocks by appropriate horizontal Lines, as required by
Horn[36] in his “Information Mapping”. In other words, we utilize horizontal indentation,
rather than the vertical indentation of syntactic structuring. We feel that this method effects
Just as meaningful a structure, which the eye can grasp automatically, as that claimed for
syntactic structuring.

A given functional block can obviously be decomposed into sub-blocks. If we refer to a
major functional block as a Level-1 block, then we can refer to the sub-blocks composing it
as Level-2 blocks (or sub-blocks). Similarly, if a given Level-2 sub-block is in turn further
decomposed into sub-blocks, then we can refer to these as Level-3 blocks (or sub-blocks).

What we have just described above is referred to as hierarchical decomposition. Concerning
such a hierarchy of various-level blocks, it is important to emphasize that the type of hor-
izontal line(s) preceding each level of block in the hierarchy can very visually identify the
level of the block. Moreover, RENUMEF is designed such that the choice is completely at the
disposition of the user.

We ourselves (please refer to the Appendix for an illustration) like to use a double-row of
asterisks (from cols. 2-72) to denote Level-1 blocks, while a double-row of dashes (from cols.
7-72) denote Level-2 blocks. The single line of comment preceding each block is imbedded
between the two respective lines. Moreover, in the case of Level-1 blocks, the BLOCK-ID
number is also included between the two lines of asterisks at the very beginning. For a
Level-3 block, we use a single row of equal signs (from cols. 9-11), with the comment on the
same line, starting in column 12.

5.4 Single Line of Comment 17

RENUMEF offers two different ways in which the user can identify both the beginning of blocks
as well as their level. The Block Number Descriptor permits the user to define the number of
a block (or sub-block), while the Header Structure Descriptor identifies the beginning (and
level) of a block by the structure of the horizontal line(s) preceding it.

5.4 Single Line of Comment
Prof. Knuth has a very valid warning concerning the use of comments[39]:

Accompanying comments explain the program and relate it to the global structure
illustrated in flow charts, but it is not so easy to understand what is going on; and
it is easy to make mistakes, partly because we rely so much on comments which
might possibly be inaccurate descriptions of what the program really does.

We propose two stipulations regarding the use of comments which we feel completely rectifies
his objections:

1. No more than a single line of comment should precede any given-level block;

2. The comment should state the function, or process, to be performed in the given-level
block; i.e., it should state what is to be done, but not how it is to be done.

We now elaborate on each of these points. Concerning the first, two benefits are to be
achieved:

la. The code itself, as well as the structure achieved through horizontal indentation, are not
cluttered up by excessive comments

1b. Because there is only a single line of comment preceding each block, the chance of the
comment being erroneous is significantly reduced.

Moreover, since programing in Functional Blocks is functionally-orientated, the programmer
of necessity must view the single comment line as though it were a part of the code. As a
result, it is virtually impossible for a comment line to be incorrect.

The second stipulation is given for two reasons:

2a. Since programing in Functional Blocks is functionally-orientated, it is very necessary to
state the process, or function, to be performed in each given-level block

2b. The function to be performed (i.e., what is to be done) in any level block is less subject
to change than how it is to be done.

This second reason (#2b) is especially true in a Level-1 major block, where a change in
algorithm does not reflect a change in the process to be performed, but only how the process
is to be performed. (Admittedly, however, a change in algorithm at the major block level
will probably cause all sub-level blocks to be completely changed, including their preceding
comment lines.)

18 5 A CRITIQUE OF FUNCTIONAL BLOCKS

5.5 HIPO-Chart Processes

While on the subject of comments, it is of interest to note that the comments preceding the
Level-1 blocks are precisely the processes of the related HIPO chart. If comments preceding
sub-blocks are included as well, with appropriate vertical indentation and numbering, then
the complete outline of the processes to be accomplished becomes available.

5.6 Proper GOTO Branches: Verifiable Code

Premise 2 states: “The GOTO construct is allowed in program proofs if, for each label L,
there is a logical assertion a(L) which is to be uniquely true, for each appearance of the label
L, whenever we reach L.”

Our concept of “proper GOTO branches” is a necessary, although not sufficient, condition
for Premise 2 to be true. To prove it is a necessary condition, we need only show that it is
not possible!? for Premise 2 to be true when “improper GOTO branches” exist:

If, at the beginning of Block (or Sub-block) #L, marked by label L.,'* we assume a
logical assertion (L) to be true, then a branch (from an external block) to Block
#L, other than to its beginning (say to label L+4-¢€), must of necessity presume some
other logical assertion (L+€) to be true, simply because the intervening code'?
between labels L and L+e modifies the assertion a(L) at L to a new assertion
B(L+e) at Le.

From a different perspective, we realize that a programmer, who branches into the midst of
a block, is viewing that block in a microscopic sense (as a detailed set of parts) rather than
in a macroscopic sense (as a single functional entity). The whole concept behind Functional
Blocks, of course, is that each block must be viewed as a single functional entity. Thus, from
the standpoint of other blocks, the interior contents of that block must be hidden from them
— in fact, does not even concern them. The utilization of this hiding principle (which is just
another way of defining “proper GOTO branches”) is what insures that any maintenance
changes made to a given block will be isolated to that block, rather than rippling over to
other blocks.

Even when a module is coded in functional blocks, however, and accordingly contains only
“proper GOTO branches”, this is still not a sufficient guarantee in itself that every reference
to a label L is with respect to the same logical assertion, a(L). The point we must make here
is that is is not sufficient just to specify the unique function that a block is to perform. For
example, the COS function is a unique function; yet it can certainly be called under a variety
of different conditions. Similarly, a given functional block could conceivably be referenced in
certain cases under the assumption that assertion a(L) was true, and in other cases under
the assumption that assertion §(L) was true.

12 A more proper wording should be “not necessarily possible”, because trivial cases could exist where the intervening state-
ments between the labels L and L+e could be “NOP” statements, such as CONTINUE or GO TO L+e. Excluding such trivial cases
however, the stronger wording of “not possible” is admissible.

131n reality, the value of the label will be Lea, where a is defined by the aMODb in the appropriate BLOCKID descriptor. This
does not diminish the proof, however.

5.7 A More Precise, Description Preceding a Functional Block 19

For the predicament presented above, several different solutions are available. One is to have
two functional blocks, each performing the same function, but with one at label L, and the
other at label M. Then Block #L is branched to only when «(L) is true, while Block #M
is branched to only when a(M) is true. This approach is wasteful of memory, of course.
A preferred method in this case would be either to transform the functional block into an
in-line subroutine, or to make it into a standard external subroutine. In either case, the
function,is then “called” under the appropriate logical condition.

5.7 A More Precise, Description Preceding a Functional Block

We previously stated that the single line of comment preceding a given-level functional
block should describe the process to be performed by that block. In view of the above
discussion, however, we propose that the comment, up to now consisting of just a single
process-description, e.g.,

C process-description

be replaced by a two-part comment, the first part being the logical assertion, or event, that is
to be true when we reach that block, and the second part being the process to be performed,

e.g.,
c <event>: process-description

For purposes of visual emphasis, we enclose the event in the <> delimiters, and separate
the two with a colon. The two must still occupy only a single line, of course.

We recommend this even when all events are unique. The reason is quite simple: it em-
phasizes to the programmer exactly what is happening. (Note: this is a DESIGN concept.)
We quite vividly illustrate this in our companion technical report, Structuring FORTRAN
Modules by Functional Blocks: An Overview (and a COMP-AID Service), as well as in the
example shown in the Appendix of this paper.

5.8 Self-Documenting

Since the single-line comments preceding the functional blocks are identical to (or equiva-
lent abbreviations of) the processes of the module’s INPUT-PROCESS-OUTPUT diagram,
essentially the only documentation that therefore need be maintained on the module is the
module-code itself! Hitherto, it has been thought that a module was not documented if
external documentation concerning the module was not available. (Interestingly, by this
definition, many modules were not documented.) And even when external documentation
was provided, it was usually not updated to reflect changes made to the module. Hence
a paradoxical situation existed: because the module code was unstructured, it definitely
needed external documentation; yet this external documentation was itself unreliable.

Modules coded in Functional Blocks, however, provide their own documentation. When
maintenance is performed on the module, the programmer knows that the “module doc-
umentation” is being simultaneously updated along with the module itself, since they are
one-and-the-samel!

20 5 A CRITIQUE OF FUNCTIONAL BLOCKS

Our concept of external documentation is that it should be extremely insensitive (i.e., in-
variant) to maintenance and enhancement. Stated another way, we are saying that external
documentation should be restricted to that class of documentation which is (nearly) in-
variant to maintenance and enhancement. Now the traditional method of documentation,
in which the module code was augmented with an external description of how the module
accomplishes its processes, was unfortunately very sensitive to module changes.

There are, however, several very invaluable external types of documentation that can be kept
on a module, in addition to the module-code itself, which are fortunately quite insensitive
to module changes. These are:

1. A description of what the module does

2. A description of each variable in its argument list (if present), describing
(a) variable type
(b) whether it is Input, Output, or both

3. A description of labelled COMMON’s, if any, employed

4. An alphabetical list of the variables utilized in the module, with each of their —
(a) mnemonics spelled-out
(b) types specified
(c) purposes briefly described

These can, if desired, be maintained in a “Prologue Section” at the very beginning of the
module. Documentation of this type, besides being very useful, is extremely insensitive to
changes made to the module.

In conclusion, documentation of this kind, along with the module-code itself, is transfer-
able to any other of your programmers with a maximum of understandability. From this
standpoint, there is an extremely important additional dividend: the impact of programmer-
turnover on the transferability of your code is significantly reduced, if not completely elimi-
nated!

5.9 How Many Blocks in a Module?

This question is not necessarily equivalent to the related question, “How long should a
module be?” From the standpoint of programing in a syntactically structured language,
however, this latter question is the relevant one, since a solid block of nested IF THEN
ELSE’s and DO WHILE’S, etc., becomes very difficult to comprehend if the module length
is not restricted. This is why Harlan Mills introduced the concept of a segment[40] of code, in
which the length of the module (or segment) is restricted to the number of lines of program
text that will fit on a single page (i.e., 50 or fewer lines of code).

Modules coded in standard FORTRAN, utilizing Functional Blocks, do not face this similar
restriction. Interestingly, the restricting “length” of a module coded in functional blocks is
dependent upon the number of functional blocks, and the length of each functional block,
rather than upon the total module length per se. Even the “permissible” length of each
functional block itself is dependent upon whether it is also divided into sub-blocks or not.

5.10 Can there be an Exception to Total Module Length? 21

What, then, is the maximum number of Functional Blocks we can have in a module while
still maintaining our comprehension and understandability of the module? David Frost, in
his article “Psychology and Program Design”[37], answers this for us:

The number of pieces of information (chunks) we can think about at any one
instant has been estimated to be approximately seven (7£2) and more recently to
be between five and seven. The number 7+2 crops up in so many psychological
experiments that it has been called a “magical number”.

... For example, a telephone number is much more easily comprehended and
remembered as (602) 555 2342 X441 (four chunks) rather than as 6025552342441
(one big chunk with thirteen units in it).

From this standpoint alone, we accordingly suggest that the maximum number of Functional
Blocks in a single module be 7£2. (It is of interest to note that we, independently of Frost’s
information, had from other considerations concluded that 9 should be the maximum number
of blocks.)

What if we find that more than nine blocks are involved in a single module? Quite simply,
that is strongly indicative that we should decompose that module into two or more separate
modules.

Ok, now what about the suggested maximum length of each block? Here, based on our own
experience, we come up with a suggested maximum length of 15—20 lines of code. Now this
is applicable to the length of the block only if it is in fact just a single block, i.e., not in turn
divided into sub-blocks. If we divide that single block into sub-blocks (the number of which
is not to exceed 742), then each of these sub-blocks can in turn have a maximum length
of 15—20 statements. See how we’ve increased the effective length of a major Functional
Block while still maintaining a high degree of comprehension. This is possible, of course,
only because our blocks are Functional Blocks in the first place (i.e., in which only “proper
GOTO branches” are utilized).

Conceptually, the same procedure could be repeated for any given Level-2 sub-block, dividing
it into Level-3 sub-blocks (not to exceed 7£2 in number). We have found from experience
however, that our comprehension does begin to degrade slightly when we go to Level-3 sub-
blocks. And when we go to Level-4 sub-blocks, the degradation becomes greater yet.

What if we find that Level-4, or lower, decomposition is required in a given functional block?
Quite simply, that is very strongly indicative that we should decompose that module into
two or more separate modules.

5.10 Can there be an Exception to Total Module Length?

Of course there can be exceptions. One notable exception occurs when we structure a module
for a paying client. If the module is overly long, with obvious breaking points apparent, we
can suggest it to the client; but in the final run of things that is something that the client
must elect to do. We never take it upon ourselves to do that.

922 6 CONCLUSION
6 Conclusion

6.1 Functional Blocks offer a powerful alternative

Programing in Functional Blocks offers a powerful alternative to programming in a syn-
tactically structured language, such as the Object-Orientated languages, or even the new
FORTRAN 90 series. The understandability, verifiability, and maintainability of the result-
ing code is equal to, if not better than, that of the above-described syntactically structured
code! Moreover, the danger of being lulled into forgetting about the underlying DESIGN
considerations, to which the syntactically structured languages are partial, essentially does
not exist in code utilizing Functional Blocks, since the programmer must be interactively
involved (utilizing a programming aid such as RENUMF) to make the procedure work.

The single-line comments preceding each major Functional Block are the processes of the
accompanying HIPO diagram for the module. The code itself (with accompanying single-line
comments) serves as the documentation for the module.

The maximum length of a module coded in Functional Blocks is dependent upon the total
number of Functional Blocks present, and their lengths, rather than upon the total number
of lines of code per se.

The concept of coding in Functional Blocks is directly applicable to standard FORTRAN,
with the result that the high efficiency of standard FORTRAN, such as FORTRAN 77, can
be utilized in producing code which is at the same time highly understandable, verifiable,
and therefore readily maintainable.

6.2 Converting legacy FORTRAN to FORTRAN 90

Because many scientific FORTRAN 77 subroutines are both very straightforward and very
short in length, the use of a F77 to F90 converter on such modules accordingly works very
well.

But not all scientific legacy FORTRAN programs or subroutines, as well as most business
legacy FORTRAN subroutines, are all that straightforward nor all that short. And, so it
seems, the longer these legacy code units are, the more poorly structured and overly complex
they also are. On these rather complex code units, attempts at applying automatic F77 to
F90 converters fare quite poorly, as Dijkstra himself had pointed out[12].

Our suggestion is to first structure these poorly structured modules by our methodology of
Functional Blocks, by which — in a rapidly converging iterative process — a well structured
and highly understandable module is soon arrived at. Now use your F77 to F90 converter,
and all will be well.

APPENDIX 23

Characterization of a Functional Block

A Functional Block is a block of code possessing at least the following eleven characteristics:

10.

11.

. It performs a single function.

. It exists at a specified Hierarchical Level. (The major blocks required to accomplish

the module-task are Level-1 blocks; a decomposition of any major block into sub-blocks
results in Level-2 blocks; etc.)

. It is preceded by horizontal line(s) which

e denote its level,
e contain a single line of comment,
e contain an optional block number.

. Its single line of comment preceding it is of the form,

<event>: process-description

where event denotes the logical assertion that is uniquely true upon entry into the block,
and process-description describes the process to be performed.

. If it is a major (Level-1) block, then the block number is mandatory. (While explicit

numbering is optional for sub-blocks, yet every sub-block has at least an implicit block
number associated with It.)

. Statement number labels for blocks should be chosen so that the significant portion of

each statement number is equal to a suitable multiple of the block number.

Ordering of statement number labels within a given block occurs in the non-significant
portion of the statement numbers, and is sequentially ascending by a selected increment.

. The value of the non-significant portion of the first statement number in the block is

zero if the statement number label occurs on the first executable statement within the
block; otherwise it is set to the non-zero increment value.

Note: Once the horizontal descriptor lines specified in Step #3 are in place, then
RENUMF automatically performs the block-renumbering as stipulated above in Steps

#6, #7, and #8.

. The only permissible GOTO branch from any external major (Level-1) block to a given

major block is to its beginning. This is termed a “proper GOTO branch”.

The same rule applies to all Level-2 sub-blocks within the domain of a given major
(Level-1) block; etc.

Note: RENUMF automatically reports those statement numbers which violate Steps
#9 and #10 above, as well as stating the level of the higher hierarchy block involved.

Only statement number labels which are referenced are retained. Unreferenced labels
tend to “clutter up” the code and confuse the programmer’s grasp of the flow of pro-
cessing.

24 APPENDIX
An Example

Some background

The example shown in Figures 1.a, 1.b, and 1.c employs an algorithm which is essentially
identical to the one employed by Dr. Peter G. Anderson[42], presently Professor Emeritus
in the Computer Science Department of the Rochester Institute of Technology, back when
he was instructing a FORTRAN class to beginning programmers in 1976 at the New Jersey
Institute of Technology.'*

This algorithm is ideally suited to our illustration of Functional Blocks, because it is short,
not overly complex, and yet certainly not trivial. It readily illustrates how Functional
Blocks permit an otherwise complex whole to be clarified through decomposition into a set
of readily understandable parts. Moreover, most all aspects of Functional Blocks described
in the previous characterization are illustrated in this example.

The example involves the CHECKER subroutine,'® which places checkers on the NxN
checkerboard such that the four corners of all possible squares that can be formed do not
contain the same colored checkers. The algorithm employed puts checkers on the board,
one at a time. If it runs into a blocked situation where neither colored checker will work, it
backtracks (i.e., retreats), changing previous decisions.

Please note the following three points regarding the code shown in these figures:

1. What is actually shown in Figures 1.a and 1.b is the printout of the RENUMF processing
of the subroutine version of Dr. Anderson’s CHECKERBRD program, while Figure 1.c
contains two of the three associated cross references, along with the Functional Block
Outline, all generated by RENUMF

2. While columns 73-80 of the printout of this code contains an ID and a sequence number,
yet these same columns within the code source file output by RENUMEF are left blank
(these are the default options used by RENUMF)

3. Some blank “spacer lines” (i.e., completely blank lines with only a “C” or an “*” in

column 1) have been removed in the source listings in Figures 1.a and 1.b, in order to
make these fit onto a single page

14 The authors not only acknowledge Prof. Anderson as the source of the algorithm employed in the example, but also wish
to point out that Dr. Anderson employed an interesting alternate approach to structuring standard FORTRAN, in which the
various parts of the program are clearly evident through the use of horizontal indentation to achieve a vertical alignment
encompassing each program part, as illustrated on pages 10-12 of his brochure, Structured Programming: Style Manual for
FORTRAN Programmers.

In the process of revising our report, originally completed in 1977, we found that we had lost the copy of Dr. Anderson’s
style manual, which we desired to have in order to double check previous statements. We accessed him through his web site,
http://www.CS.RIT.edu/~PGA, and requested another copy, which he graciously sent us. It also afforded us the chance
to visit with him, recalling those earlier days, some 30 years ago, when we first had the privilege of corresponding with him
regarding the structuring of FORTRAN. (If you wish to contact Dr. Anderson through e-mail, it is advisable to call him first,
stating that you are going to e-mail him; otherwise your e-mail will not make it through his filter.)

Unlike us, Dr. Anderson has moved on from FORTRAN to a newer language. What is that newer programming language?
Go to his web site to find out.

15We extracted the non-trivial part of Dr. Anderson’s CHECKERBRD program into the CHECKER. subroutine, with ar-
guments (N, BOX, NMRET, IERROR), where N, the NxN board size, is input from the main CHECKERBRD program, and BOX,
NMRET, and IERROR are output to it, where BOX is the NxN array of checkerboard color values, NMRET is the number of retreats,
and IERROR is an integer error code.

APPENDIX

Figure 1.a: Listing of subroutine version of Dr. Anderson’s CHECKERBRD program (Part 1 of 2)

Directory: M:\GOTOs_OK Input file: checker.for
Licensed (RN1006) for Ronald C. Wackwitz (COMP-AID) RENUMF 2.3.0, Oct. 25, 2004
LISTING OF SOURCE DECK "CHECKER " 04/28/06 15:57:31 PAGE 1
1 SUBROUTINE CHECKER (N, BOX, NMRET, IERROR) CHEC0010
CHEC0020
Abstract *#x[04/28/2006] HEC0030
Places checkers on NxN board so that no corners have all same color.CHEC0040
CHEC0050
Keywords CHEC0060
checkers, corners of squares. retreat CHEC0070
CHEC0080
Purpose CHEC0090

The CHECKER subroutine places red and black checkers on a NxN board CHEC0100
so that the corners of all squares that can be formed do not have CHEC0110

checkers of the same color. CHEC0120
CHEC0130

Arguments CHEC0140
N INPUT INTEGER SCALER CHEC0160
The size of the NxN checkerboard, where 2 <= N <=20. CHEC0170
CHEC0180

BOX OUTPUT INTEGER ARRAY CHEC0190
Array of checkerboard color values, where O=RED and 1=BLACK, CHEC0200
CHEC0210

NMRET OUTPUT INTEGER SCALAR CHEC0220
Total NuMber of RETreats required for the NxN checkerboard. CHEC0230
CHEC0240

IERROR OUTPUT INTEGER SCALAR CHEC0250
Integer ERROR value returned: CHEC0260

0 = valid return CHEC0270

2 = invalid input value of the N input arg CHEC0280

CHEC0290

Commons loaded: CHEC0300
None CHEC0320
CHEC0330

Commons used: CHEC0340
None CHEC0360
CHEC0370

Modules called: ADVANC, MINO, RETRET CHEC0380
CHEC0390

Databases (associated data sets), or Files accessed: CHEC0400
Data base: None CHEC0410
Files: None CHEC0420
CHEC0430

Errors CHEC0440
IERROR = 0, valid return CHEC0450
IERROR = 2, invalid input value of N CHEC0460
CHEC0470

Notes CHEC0480
None. CHEC0500
CHEC0510

History CHEC0520
[Key: PGA = Dr. Peter Gordon Anderson, CHEC0530

RCW = Ronald C. Wackwitz] CHEC0540

Original , 09/01/1976, #01, PGA, Initial release as ENTIRE program. CHEC0550
CHECKER , 05/31/1977, #02, RCW, Extracted checker-putting portion CHECO560
of Dr. Anderson’s program, cast it CHECO570
into the form of Functional Blocks,CHECO580

CQAQAQAQAAQAQAQAQAQQAQQQQ % % % ¥ % % % % % % X % ¥ % % % % % % X % ¥ % ¥ K X X X X X X K X K X X X X X X K X X X X X X X X K X X X X X ¥ %

and added this header and CHEC0590
documented local variables. CHEC0600

CHECKER , 04/28/2006, #03, RCW, Ran fresh RENUMF run on CHECKER.forCHECO610
CHEC0620

End HEC0630
CHEC0640

HEC0660

Local Variables. CHEC0670

HEC0680

Name Size Type Description CHEC0690
————————————————— HECO700

ADVANC Sub ADVANCe current (I,J) to next square CHECO710

BLACK 1 Integer value set =1 to denote BLACK color CHECO720

1 1 Index used for rows within BOX array CHEC0730

3 1 Index used for columns within BOX array CHEC0740

K I Index used to search all MINNY squares CHECO750

MINO 1 Integer function returns MIN of arg values CHECO760

MINNY 1 Max number of squares within current (I,J) CHECO770

0K L Flag denoting whether all squares are OK CHEC0780

RED 1 Integer value set =0 to demote RED color CHECO790

RETRET Sub RETREaT from current (I,J) to a RED square CHECO800

SuM 1 SUM of color values within current square CHEC0810

CHEC0830

c CHEC0840
Cromnnn HEC0850
CrxxxxDeclarations. *CHEC0860
Cromnnn HECO870

c CHEC0880

c HEC0900

c Intrinsics. CHEC0910

c HEC0920

2 IMPLICIT NONE CHEC0930
c CHEC0940

c CHEC0950

c HEC0960

c Arguments. CHEC0970

c HEC0980

3 DIMENSION BOX(20,20) CHEC0990
4 INTEGER N, BOX, NMRET, IERROR CHEC1000
c CHEC1010

c CHEC1020

c HEC1030

c Local. CHEC1040

c HEC1050

5 INTEGER SUM, RED, BLACK, I, 3, K, MINNY CHEC1060
6 LOGICAL OK CHEC1070

7 DATA RED, BLACK / 0, 1 / CHEC1080

26

APPENDIX

Figure 1.b: Listing of subroutine version of Dr. Anderson’s CHECKERBRD program (Part 2 of 2)

16
17

20

21

22
23
24
25

26

27

28
29
30
31

32

33

34

35
36

Licensed (RN1006) for Ronald C. Wackwitz (COMP-AID)
LISTING OF SOURCE DECK "CHECKER " 04/28/06

c” CHEC1090
C CHEC1100
Coomkokk HEC1110
C(01) <Entry>: Perform initialization. *CHEC1120
CH¥kxx HEC1130
CONTINUE CHEC1140
CHEC1150

HEC1170
<Entry>: Zero IERROR; validate N. If invalid, set IERROR=2 & rtrnCHEC1180
HEC1190
IERROR = 0O CHEC1200
IF ((N.GT.1) .AND. (N.LE. 20)) GO TO 1200 CHEC1210
IERROR = 2 CHEC1220
RETURN CHEC1230
CHEC1240

HEC1260
<N valid>: Zero NMRET. CHEC1270
HEC1280
1200 NMRET = 0 CHEC1290
CHEC1300

HEC1320
<Argument processing completed>: Init I & J row-column counters. CHEC1330
HEC1340
I=0 CHEC1350

J=0 CHEC1360

C CHEC1370
C CHEC1380
CHkkxx HEC1390
€(02) <(0<=I<=N) & (0<=J<=N)>: Advance one square & set it to RED; drop*CHEC1400
CH¥kxk HEC1410
2000 CALL ADVANC (I, J, N) CHEC1420
BOX(I,J) = RED CHEC1430

C CHEC1440
¢ CHEC1450
Cookkkk HEC1460
C(03) <Counter now at I,J>: Test corners of all squares; skip ->#5 if OKCHEC1470
CHkkxk HEC1480
3000 CONTINUE CHEC1490
CHEC1500

CHEC1510

HEC1520
<Entry>: Init OK=True for current testing of squares upto (I,J). CHEC1530
HEC1540
0K = .TRUE. CHEC1550
CHEC1560

HEC1580
<0K=True>: Max No. squares is one less min of (I,J); save in MINNYCHEC1590
HEC1600
MINNY = MINO(I,J) - 1 CHEC1610
CHEC1620

HEC1640
<MINNY defined>: If zero, goback ->#2 to advance one more square. CHEC1650
HEC1660
IF (MINNY .EQ. 0) GO TO 2000 CHEC1670
CHEC1680

HEC1700
<MINNY squares within (I,J)>: Check on colors of all their cornersCHEC1710
HEC1720
DO 3410 K = 1, MINNY CHEC1730

SUM = BOX(I,J) + BOX(I-K,J) + BOX(I,J-K) + BOX(I-K,J-K) CHEC1740

0K = OK .AND. SUM.NE.O .AND. SUM.NE.4 CHEC1750

3410 CONTINUE CHEC1760
CHEC1770

HEC1790
<0K will be False if corners of any square same>: But if OK, ->#5.CHEC1800
HEC1810
IF (0K) GO TO 5000 CHEC1820

C CHEC1830
C CHEC1840
CHkkxk HEC1850
C(04) <Corners of some square same color>: Interchange & ->#3 to re-testCHEC1860
CHkkxx HEC1870
CONTINUE CHEC1880
CHEC1890

HEC1910
<Entry>: If current (I,J) square not RED, retreat until it is. CHEC1920
HEC1930
4100 IF (BOX(I,J) .EQ. RED) GO TO 4200 CHEC1940
CALL RETRET (I, J, N) CHEC1950
NMRET = NMRET + 1 CHEC1960

GO TO 4100 CHEC1970
CHEC1990

HEC2000
<Current (I,J) square now RED>: Set it BLACK & ->#3 to re-test. CHEC2010
HEC2020
4200 BOX(I,J) = BLACK CHEC2030
GO TO 3000 CHEC2040

C CHEC2050
C CHEC2060
CHkkxk HEC2070
C(05) <Not same color>: If any squares left, goback —>#2 to advance. *CHEC2080
[HEC2090
5000 IF ((I.LT.N) .OR. (J.LT.N)) GO TO 2000 CHEC2100
C CHEC2110
C CHEC2120
CHkkxk HEC2130
C(06) <All squares validly filled>: So return. *CHEC2140
Cookkokk HEC2150
RETURN CHEC2160

END CHEC2170

aaaa

aaaa

aaaa

aaaaa

aaaa

aaaa

aaaa

aaaa

aaaa

aaaa

RENUMF 2.3.0, Oct. 25, 2004

16:57:31

PAGE

3

APPENDIX

Figure 1.c: Cross references and Functional Block Outline for CHECKER subroutine

27

Directory: M:\GOTOs_OK Input file: checker.for
Licensed (RN1006) for Ronald C. Wackwitz (COMP-AID) RENUMF 2.3.0, Oct. 25, 2004
CROSS-REFERENCE OF VARIABLES 04/28/06 15:57:31 PAGE 6

IN SOURCE DECK "CHECKER "

VARIABLE INFO REFERENCES
ADVANC SUB 16:R
BLACK S I 5:D 7:8 32:R
BOX A I 1:A 3:D 4:D 17:8 23:R 23:R 23:R 23:R 28:R 32:8
CHECKER SUB 1:D
I S I 5:D 14:8 16:A 17:R 20:A 23:R 23:R 23:R 23:R 28:R
32:R 34:R
IERROR S I 1:A 4:D 9:5 11:8
J S I 5: 15:8 16:A 17:R 20:A 23:R 23:R 23:R 23:R 28:R
32:R 34:R
K S I 5:D 22:8 23:R 23:R 23:R 23:R
MINO FUN I 20:R
MINNY S I 5:D 20:S 21:R 22:R
N S I 1:A 4:D 10:R 10:R 16:A 29:A 34:R 34:R
NMRET S I 1:A 4:D 13:8 30:8S 30:R
1):¢ S L 6:D 19:8 24:S 24:R 26:R
RED S I 5:D 7:8 17:R 28:R
RETRET SUB 29:R
SUM S I 5:D 23:8 24:R 24:R
Directory: M:\GOTOs_OK Input file: checker.for
Licensed (RN1006) for Ronald C. Wackwitz (COMP-AID) RENUMF 2.3.0, Oct. 25, 2004
CROSS-REFERENCE OF STATEMENT NUMBERS 04/28/06 15:57:31 PAGE 7
IN SOURCE DECK "CHECKER "
NUMBER DEFINED REFERENCES
1200 13 10
2000 16 21 34
3000 18 33
3410 25 22
4100 28 31
4200 32 28
5000 34 26
OUTLINE OF "EVENT: PROCESS-DESCRIPTIONS" 04/28/06 15:57:31 PAGE 8
IN SOURCE MODULE: CHECKER
1. <Entry>: Perform initialization. *

1.1 <Entry>: Zero IERROR; validate N. If invalid, set IERROR=2 & rtrn
1.2 <N valid>: Zero NMRET.
1.3 <Argument processing completed>: Init I & J row-column counters.
2. <(0<=I<=N) & (0<=J<=N)>: Advance one square & set it to RED; dropx*
3. <Counter now at I,J>: Test corners of all squares; skip ->#5 if 0K
3.1 <Entry>: Init OK=True for current testing of squares upto (I,J).
3.2 <0K=True>: Max No. squares is one less min of (I,J); save in MINNY
3.3 <MINNY defined>: If zero, goback ->#2 to advance one more square.
3.4 <MINNY squares within (I,J)>: Check on colors of all their cormers
3.5 <0K will be False if corners of any square same>: But if 0K, ->#5.
4. <Corners of some square same color>: Interchange & ->#3 to re-test
4.1 <Entry>: If current (I,J) square not RED, retreat until it is.
4.2 <Current (I,J) square now RED>: Set it BLACK & ->#3 to re-test.
5. <Not same color>: If any squares left, goback ->#2 to advance. *

6. <All squares validly filled>: So return. *

29:A

29:A

28 APPENDIX

A discussion of Dr. Anderson’s algorithm in the CHECKER subroutine

Since Figure 1.a just contains a header section and the declarations for the subroutine, we
can accordingly skip right to Figure 1.b to view the code logic.

Apart from the validation of N, and the initialization of NMRET and of I and J in Block #1,
and the RETURN in Block #6, we can see that the main activity occurs within Block #s 2
through 5, which form a computational loop, in which

Block #2: The (I,J) indices are advanced to the next cell by calling the ADVANC subrou-
tine, and RED is stored into that cell

Block #3: All possible squares within (I,J) are tested to see if the corners of any square
are all the same color. If no corners of all possible squares contain the same color, then
skip to Block #5; else drop to Block #4.

Block #4: If the current cell (I,J) is RED, then set it BLACK and go back to Block #3 to
re-test. Else, keep retreating one cell at a time until a RED one is found, then change it
to BLACK and go back to Block #3.

Block #5: Of all squares possible within (I,J), none contain corners all having the same
color. Therefore, if any cells within the NxN checkerboard remain, go back to #2 to
advance; else drop to Block #6 to return.

In brief, advance, test, interchange if needed — retreating if necessary until an interchange
is possible; then go back to advance again, until all NxN squares are properly loaded.
Dr. Anderson’s algorithm is elegant, yet very straight-forward. It is easy to understand.

Admittedly, we haven’t yet looked at how the ADVANC and RETRET subroutines work. (Now
you can skip over to Figure 2 on page 29 to view these modules, if you want.) But first,
we are instead going to postpone that for a moment to look at the various events preceding
each of the Functional Blocks in Figure 1.b, in order to determine if they are all unique.

Are all the events preceding each block unique?

From the cross reference of the statement numbers in Figure 1.c, we see that only two
Functional Blocks are accessed by more than a single entry — Block #s 2 and 3, which we
show in Table 2 below.

Table 2: Events Preceding Multiply-Accessed Blocks in the CHECKER, subroutine

| Block # | Approached from | <Event> |
Block #2 | Drop down from Block #1 above | I=0 and J=0
Branch back from Block #3.3 I=1 or J=1
Branch back from Block #5 I<N or J<N
Block #3 | Drop down from Block #2 above | Current square at (I,J) and loaded
Branch back from Block #4.2 Current square at (I,J) and loaded

Let’s look at the entry to Block #3 first, in which we note just two points of access — a drop
down from Block #2 above it, and a backward branch to it from Block #4.2. In both cases,

APPENDIX

Figure 2: Listing of the ADVANC and RETRET subroutines.

29

N

~N o O,

10
11

12

N

O ®Wow~N®

o

12
13

Directory: M:\GOTOs_OK
Licensed (RN1006) for Ronald C. Wackwitz (COMP-AID)
LISTING OF SOURCE DECK "ADVANC

SUBROUTINE ADVANC (I, J, N)
C
C

Input file: advanc.for
RENUMF 2.3.0, Oct. 25, 2004
04/28/06 18:02:37 PAGE

ADVA0010
ADVA0020
ADVA0030

ok ok 3k 3k ok 3k sk ok ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok sk sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok sk sk sk ok ok k sk sk sk kk ok kok kk k ADVA 0040

Ckxx*x*xDeclarations.

*ADVA0050

ok ok ok 3k ok 3k sk ok ok ok ok ok 3k sk ok ok ok ok ok ok sk ok ok ok ok sk sk sk ok ok ok ok ok 3k sk ok ok ok ok ok ok sk ok ok ok ok 3k ok sk ok ok ok ok ok sk sk sk ok ok Kk sk sk sk kk kk kk k ADVAO060

IMPLICIT NONE
INTEGER I, J, N
C
C

ADVA0070
ADVA0080
ADVA0090
ADVA0100

(Cokeok ok sk ok ok sk ok ok ok ok sk ok ok ok sk ok ok o ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ook sk ok sk ok sk ok sk ok sk ok sk ok ok skokok ok skokokkok kokokk x ADVA01 10
C(01) <Entry>: If both I & J are zero, set each to 1 and ->#3 to Return*ADVA0120
(Cokeok ok sk ok ok sk ok ok ok ok sk ok ok ok sk ok ok ok ok ok sk ok ok ok ok sk ok ok o ok sk ok ok ok sk sk ook sk ok ok ok sk ok sk ok ok sk ok sk ok skok skokok ok skokokkok kokokk x ADVA 0130

IF ((I+J) .NE. 0) GO TO 2000 ADVA0140
J=1 ADVA0150
I=1 ADVAO160
GO TO 3000 ADVA0170
C ADVA0180
C ADVA0190

ok ok ok 3k ok 3k sk ok ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok sk sk sk ok ok ok ok ok sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok sk sk sk ok ok ok k sk k sk kk kk kk k ADVA0200
C(02) <(I+J) <> 0>: Increment I, & J if requird, to advance to next cellADVA0210
ok ok 3k 3k ok 3k sk ok ok ok sk ok sk sk ok ok ok ok ok sk sk ok ok ok ok sk 3k sk ok ok ok ok sk sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok sk sk sk ok ok Kk sk k sk kk kk kk k ADVA0220

2000 I =1+ 1 ADVA0230
IF (I .LE. N) GO TO 3000 ADVA0240
I=1 ADVA0250
J=J+1 ADVA0260
C ADVA0270
C ADVA0280
Ok ok sk sk sksk sk ok sk sk sk ok ok sk sk sk sk sk sk ok sk sk kK sk sk sk sk sk s ok sk sk sk ok sk sk sk sk sk ok ok sk sk sk ok sk sk sk sk sk sk ok sk ok sk ok ok sk sk kok sk ok skok k ok k ADVA 0290
C(03) <(I,J) updated to next cell>: Return. *ADVA0300
Ok ok sk sk sksk sk ok sk sk sk K ok sk sk sk sk sk sk k sk sk ok sk sk sk sk sk s ok sk sk sk ok sk sk sk sk sk ok ok sk sk ok ok sk sk sk sk sk sk ok skok sk ok ok sk sk kok skok ok skok k ok k ADVA 0310
3000 RETURN ADVA0320
END ADVA0330

Directory: M:\GOTOs_OK
Licensed (RN1006) for Ronald C. Wackwitz (COMP-AID)
LISTING OF SOURCE DECK "RETRET

SUBROUTINE RETRET (I, J, N)
C
C

Input file: retret.for
RENUMF 2.3.0, Oct. 25, 2004
04/28/06 18:35:11 PAGE

RETR0010
RETR0020
RETR0030

(Cok ok ok 3k ok 3k sk ok ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok sk sk sk ok ok ok ok ok sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok 3k % ok ok ok ok sk sk sk ok ok %k k sk k kkk kk kk kRETR 0040

Ckxx*x*Declarations.

*RETR0050

ok ok ok 5k ok 3k sk ok ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok ok 3k sk ok ok ok ok sk 3k sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk %k ok ok ok ok sk sk sk %k ok %k k k sk kk k k k kk kRETR0060

IMPLICIT NONE
INTEGER I, J, N
C
C

RETRO070
RETR0080
RETR0090
RETR0100

ok ok 3k 3k ok 3k sk ok ok ok ok ok 3k sk ok ok ok ok ok sk sk ok ok ok ok sk sk sk ok ok ok ok sk sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk % ok ok ok ok sk sk sk k ok kk kk kkk kk kk kRETR0110

C(01) <Entry>: Decriment I. If >0, skip to #3 to return.

*RETR0120

ok ok ok 3k ok 3k sk ok ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok ok 3k sk ok ok ok ok sk sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk o ok ok ok ok sk sk sk sk ok %k k kk kkk kk kk kRETR01 30

I=1I-1

IF (I .GT. 0) GO TO 3000
C
C

RETR0140
RETRO150
RETR0160
RETRO170

(G 3k 3k 3k 3k 3k 3k 3k 3k 3k ok ok 3k 3 3k 3k 3K 5K 5k 3k ok 3k 3k 5k 3k 3K ok >k 3 3 3k 3k 3k >k 5k % k 3k 3k >k 3k 3k >k >k 3 3k 3k 3k 3k >k >k 3% %k 3k 3k >k >k >k %k >k k 3k kkk k%% *RETR0180
C(02) <I=0>: Set I=N & decriment J. If J>0, ->#3; else terminate. *RETR0190
(G 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k ok ok 3k 3 3k 3k 3K 5K 5k 3k ok 3k 3k 5k 3k 3k ok >k 3 3k 3k 3k 3k ok 5k 3k ok 3k 3k >k 3k 3k ok >k 3 3k 3k 3k 3k >k >k 3% %k 3k 3k >k >k >k % >k k% kkk kxkx %% *kRETR0200

I=N
J=J-1
IF (J .GT. 0) GO TO 3000
WRITE (*,2010) N

2010 FORMAT (1HO I5, ’ is blocked’)
STOP

C

C

RETR0210
RETR0220
RETR0230
RETR0240
RETR0250
RETR0260
RETR0270
RETR0280

ok ok 3k 3k ok 3k sk ok ok ok ok ok sk sk ok ok ok ok ok sk sk ok ok ok ok sk sk sk ok ok ok ok ok 3k sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk % ok ok ok ok sk sk sk ok ok %k k sk k kkk kk kk kRETR 0290

C(03) <(I,J) retreated to prior cell>: Print its value; then return. *RETR0300
Ok ok sk sk sk sk sk ok sk sk sk ok ok sk sk sk sk sk ok sk sk kK sk sk sk sksk s ok sk sk sk ok sk sk sk sk sk ok ok sk sk sk ok sk sk sk sk ok sk ok skok sk ok k sk sk ok ko sk ok k ok kRETR03 10

C WRITE (%,9990) I, J
C 9990 FORMAT (1H ‘’Retreated back to I=’,I2, ’ and J=’,
3000 RETURN

END

RETR0320
RETR0330
RETR0340
RETR0350

1

1

30 APPENDIX

the event for entry to Block #3 is the same — the current square is at (I,J), and it has had
a color value freshly loaded into it. When all entry assertions to a block are identical, then
we term that a very strong entry assertion.

However, we shall see that the case for the entries to Block #2 results in a much weaker
overall entry assertion, due to its need to accommodate each of the three slightly different
access points. In such a case, all that we can do is to arrive at a particularly general entry
assertion that accommodates each of the cases — (0<=I<=N) and (0<=J<=N). The more
general we must make the composite assertion, the weaker it becomes.

For example, please note that Block #2 is accessed for I=0 and J=0 only for the initial
drop-down from Block #1. (These values of (I,J)=0, by the way, are used to initialize the
ADVANC subroutine, as we see from Figure 2.) Thereafter, in all subsequent accesses to Block
#3, the more specific assertion of (1<=I<=N) and (1<=J<=N) applies.

The termination of the CHECKERBRD program in the RETRET subroutine

We really should have modified the RETRET subroutine, such that the termination in its Block
#2 is instead passed through to an output argument, IERROR, which the CHECKER subroutine
could then pick up in its call to RETRET in Block #4.1. That would permit the CHECKER
subroutine to pass that through to the main CHECKERBRD program, which could then
make decisions accordingly.

Having noted that, we for now bypass this issue.

The execution of the CHECKERBRD program — in 1977

Originally, back in 1977, we compiled the CHECKERBRD program using IBM FORTRAN G,
and ran it on an IBM 370/155 mainframe. The results are shown in Table 3 below with re-
spect to board size and the number of retreats required.

Table 3: Number of Retreats required for Board Sizes up to 10, on IBM 370/155
| Board Size | Number Retreats Required |

2x2 0
3x3 0
4x4 3
5x5 3
6x6 29
<7 44
8x8 90
9x9 122
10x10 7,275,890

We did not run it for the 11x11 board size.

APPENDIX 31

The execution of the CHECKERBRD program — in 2006

This time, we compiled the CHECKERBRD program using the 32-bit MS FORTRAN Pow-
erStation (Version 4.0) compiler, and ran it on a 1.83 GHz Bantam PC,' with one GB of
memory. This resulted in an unoptimizd CHECKERBRD program. Then we recompiled the
program using time-optimization, with the “/0x” switch. The results are shown in Table 4
below, with one distinction: the times shown for board sizes of 9 or less are the total times
for 10,000 loops, while those times for board sizes of 10 or greater are the actual times, in
seconds.

Table 4: Number of Retreats and timings on Bantam PC
[Board Size | Number Retreats Required | Time, secs. | Optimized time, secs.

2x2 0 0.00 0.00
3x3 0 0.00 0.00
Ix4 3 0.02 0.00
5xb 3 0.03 0.02
6x6 29 0.11 0.07
=T i1 0.19 0.08
8x8 90 0.35 0.14
9x9 122 0.50 0.20

10x10 7,275,890 2.14 0.01

Tix11 211,734,683 64.50 26.30

16Bantam Electronics (aka Tinkertronics), (512) 719-3560, is at 2600 McHale Court, Suite 100, Austin, TX 78758.

32 ACKNOWLEDGEMENTS
Acknowledgements

Dr. Peter G. Anderson

The authors wish to thank Dr. Peter G. Anderson, Professor Emeritus in the Computer
Science Department of the Rochester Institute of Technology, both for the excellent and
thought-provoking algorithm within the CHECKERBRD program which he provided us, as
presented in his manual, Structured Programming: Style Manual for FORTRAN Program-
mers, and for his gracious and helpful attitude — both now and back in 1977. Yes, back
then we enjoyed discussing with him the philosophy of structuring FORTRAN code.

Dr. William L. Kleb

The authors wish to additionally thank Dr. William (aka “Bil”) L. Kleb, of the NASA
Langley Research Center, for his explanation — with respect to his work at NASA — of the
importance of choosing the appropriate compiler for the particular FORTRAN code used.
As we have seen, even the optimization switch can result in significant increases in execution
speed.

REFERENCES 33
References

[1] Barry W. Boehm, “Software and its Impact: A Quantitative Assessment”, Datamation
19(5), (May 1973), 48-59.

[2] Charles P. Lecht, The Waves of Change [a pre-release review by Computerworld 11(16),
(April 18, 1977), 9 (Figure I- 6)].

[3] Malcolm M. Jones, “Software Notes”, Datamation 19(5), (May 1973), 196.

[4] Charles P. Lecht, The waves of change [a pre-release review by Computerworld 11(18),
(May 02, 1977), 14 and 15 (Figure 1I-4)].

[5] Martha Nyvall Jones, “HIPO for Developing Specifications”, Datamation 22(3), (March
1976), 112, 114, 121, 125.

(6] Gene R. Katkus, “Applying Structured Programing to Command, Control, and Com-
munication Software Development”, Computer, (June 1975), 43-47.

(7] Glenford J. Myers, ReliabLe Software Through Composite Design (New York: Man-
son/Charter Publishers, Inc., 1975), 117-119.

[8] L.L. Constantine, G.J. Myers, and W.P. Stevens, “Structured Design”, IBM Systems
Journal 13(2), (May 1974), 115-1309.

9] Glenford J. Myers, op. cit.

[10] F.T. Baker, “Chief Programmer Team Management of Production Programming”, IBM
Systems Journal 11,(1), (1972), 56-73.

[11] F. Terry Baker and Harlan D. Mills, “Chief Programmer Teams”, Datamation 19(12),
(December 1973), 58-61.

[12] E.W. Dijkstra, “Go to statement considered harmful”, Comm. ACM 11(3), (March
1968), 147-148, 538, 541. [The second set of pages 147-148 is applicable.] ’

[13] Donald E. Knuth, “Structured Programing with go to Statements”, Computing Surveys
6(4), (December 1974), 261-301.

[14] G.M. Weinberg, The Psychology of Computer Programming (New York: Van Nostrand
Reinhold, 1971)

[15] E.W. Dijkstra, “The Humble Programmer”, Comm. ACM 15(10), (October 1972), 859~
866.

[16] William Delaney (edited by Jack Stone), “Software Must Satisfy Client — Not Gratify
Programmer’s Ego”, Computerworld (January 31, 1977), 18.

[17] G.J. Myers, “Composite design facilities of six programing languages”, IBM Systems
Journal, 3 (1976), 212-224.

[18] E.W. Dijkstra, in Software Engineering - Concepts and Techniques, Peter Naur, Brian
Randall, J.N. Buxton [Eds.] (New York: Manson/Charter Publishers Inc., 1976), 30-31.

34 REFERENCES

19] Donald E. Knuth, op. cit., 264-266.
20| Donald E. Knuth, op. cit., 265.

[19]
[20]
[21] Donald E. Knuth, op. cit., 291.

[22] E.W. Dijkstra, “Structured Programing”, in Software Engineering — Concepts and
Techniques, Peter Naur, Brian Randall, J.N. Buxton [Eds.] (New York: Manson/Charter

Publishers, Inc., 1976), 222-226.
23| Donald E. Knuth, op. cit., 275.
24] Donald E. Knuth, op. cit., 289-290.
25| Donald E. Knuth, op. cit., 294.
26] Donald E. Knuth, op. cit., 262-263.
27 E.W. Dijkstra, personal communication to Donald E. Knuth, January 03, 1973.

[23]
[24]
[25]
[26]
[27]
28]

28] Richard J. Weiland, “Even PL/I Carries No 'Good Program’ Guarantee”, Computer-
world (June 28, 1976), 25.

[29] Kenneth T. Orr, “Structured System Design More Vital Than Language”, Computer-
world (June 28, 1976), 25.

30] Donald E. Knuth, op. cit., 263.
31| Donald E. Knuth, op. cit., 268.
32| Donald E. Knuth, op. cit., 286.

34| Donald E. Knuth, op. cit., 282-283.

[30]
[31]
32]
[33] E.W. Dijkstra, personal communication to Donald E. Knuth, January 30, 1974.
[34]
[35] Donald E. Knuth, op. cit., 274-275.

[36]

36] Robert E. Horn, “Information Mapping: New Tool to Overcome the Paper Mountain”,
Educational Technology (May, 1974), 5-8; “InformAtion Mapping”, Datamation 21(1),
(January 1975), 85-88.

[37] David Frost, “Psychology and Program Design”, Datamation 21(5), (May 1975), 137—
138.

[38] Knut Bulow, “Programing in Book Format”, Datamation 20(10), (October 1974), 85—
86.

[39] Donald E. Knuth, op. cit., 272.

[40] Harlan D. Mills, “Top-down Programming in Large Systems”, in Debugging Techniques
in Large Systems, R. Rustin [Ed.] (Englewood Cliffs, N.J.: Prentice-Hall, 1971), 41-55.

[41] Ronald C. Wackwitz and Jay Falck, Structuring FORTRAN Modules by Functional
Blocks: An Overview (and a COMP-AID Service). Technical Report, The COMP-
AID Company, 513 Old Bear Creek Road; New Braunfels, TX 78132, February 1980,
87 pages.

REFERENCES 35

[42] Peter Gordon Anderson, “Structured Programming: Style Manual for FORTRAN Pro-
grammers”, (Newark: New Jersey Institute of Technology, September 1976), 10-12.

[43] Andrew Scriven, “Scientific Programming in Fortran 90 with the IBM x1f90 Compiler”,
Fortran Journal 6(2), (March/April 1994), 6.

[44] Niklaus Wirth, “Program development by stepwise refinement”, Comm. ACM 14(4),
(April 1971), 221-227.

[45] Scott W. Ambler, “How Agile Are You?”, Software Development 13(12), (December
2005), 47-49.

[46] William L. Kleb et al, “Collaborative Software Development in Sup-
port of Fast Adaptive AeroSpace Tools (FAAST)”, http://library-
dspace.larc.nasa.gov/dspace/jsp/bitstream/2002/12651/1/NASA-aiaa-2003-3978.pdf
(November 2003), 6-12.

[47] William L. Kleb et al, op. cit., 17-19.
[48] Andrew Scriven, op. cit., 16.
[49] William L. Kleb, personal communication to Ronald C. Wackwitz, April 7, 2006.

